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S/N, 24020Niter61, RJ, Brazil 

Received 5 October 1989 

Abstract. Recent experiments have measured the magnetisation of one to three 3He atomic 
layers adsorbed on graphite. The properties of this novel system were interpreted by a 
two-dimensional ferromagnetic Heisenberg model. We perform real-space renormalisation 
group calculations for the two-dimensional triangular Heisenberg model with a magnetic 
field. We also make a quantum mechanical generalisation of a method which calculates the 
magnetisation recursively at any point of the global phase diagram. Our theoretical results 
for T >  J = 2.1 mK agree well with the experimental data and the exact high-temperature 
expansion. For T < J the agreement with the data is only qualitative. 

1. Introduction 

The nuclear magnetic properties of solid 3He have sparked off a large number of 
theoretical and experimental studies in the past 20 years. The two solid low-density 
distinct, magnetically ordered phases and other properties of liquid 3He offers a unique 
opportunity to study fundamental problems of quantum mechanics [l]. The study of the 
magnetisation of 3He films and its properties has also attracted considerable attention 

Most of the recent work on adsorbed 3He involves exfoliated graphite as substrate 
because it is the best characterised system for surface studies and a close approximation 
to ideal two-dimensional systems [5,6]. Lately the magnetism of 3He up to three atomic 
layers was studied [7-91. According to the current theoretical interpretation of the three- 
particle ring exchange mechanism for three-dimensional solid 3He [ 11 and also adsorbed 
3He [lo] the data were interpreted in the following way [ll]: the high density of the 
first layer precludes any significant particle exchange and its magnetic properties are 
essentially described by a free-spin Curie law. The third-layer atoms form a degenerate 
Fermi fluid and therefore their magnetisation is very small. Most of the signal in the low- 
temperature (2 mK) regime is due to the second-layer atoms, which are able to perform 
quantum mechanical tunnelling motions. Furthermore a high-temperature expansion 
for the two-dimensional Heisenberg model reproduced very well the magnetisation data 
for T > 2.1 mK, and the low-temperature behaviour of the susceptibilitywasexponential 
like, in agreement with theoretical predictions [7, 111. Thus it was conjectured that the 
adsorbed 3He at millikelvin temperatures provides the first example of a real two- 
dimensional nuclear Heisenberg ferromagnet. 
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Motivated by this new two-dimensional Heisenberg system we generalise the quan- 
tum mechanical real space renormalisation group method of Caride et a1 [12] in order to 
deal with the Heisenberg model in thepresence ofa magneticfield. Our aim is to develop 
a technique that can be applied for any arbitrary temperature. This is not the case of the 
high-temperature expansion used in [7,11] valid only for T > J where J is the exchange 
interaction. However, the non-commutative quantum aspect of the system introduces 
discrepancies when it is treated ‘by pieces’ [13] as in the approximate renormalisation 
group procedures. Quantitative studies [ 141 have established that decomposition into 
subarray methods are strictly correct for classical systems and are an excellent approxi- 
mation for all temperatures when applied to quantum systems. Comparison between a 
cluster renormalised as a whole and by ‘by pieces’ revealed differences of order of 10% 
for the renormalised coupling constant J in the low-temperature regime T < J [ i4]. The 
present work is a first step in the calculation of the thermodynamic properties of the 
quantum Heisenberg model in an external field using real-space renormalisation group 
methods. Larger arrays which enable more reliable results to be obtained will be studied 
in the future. 

The plan of the paper is as follows: the scaling method for the Heisenberg model in 
the presence of a magnetic field is developed in section 2. In section 3 we derive the 
quantum renormalisation group recursion relations, their flow and fixed points. We also 
obtain the low-temperature scaling properties and study the dynamic behaviour. In 
section 4 the generalised magnetisations are defined and it is shown how to obtain the 
measured magnetisation recursively. Section 5 contains the analysis of the renor- 
malisation group equations, the comparison between our calculations and the exper- 
imental results of [7,11]. We conclude in section 6 and discuss how improvements can 
be made upon our method. 

2. Heisenberg model and formalism 

Let us assume a two-dimensional crystal of Nsites described by the reduced Hamiltonian 

where ai, ai are Pauli operators for neighbour sites whose components ox, oY and az are 
the usual Pauli matrices associated with spin 4 and where K = J/2kBT, W = J ( l  - A)/ 
2kBT and H = pBo/kBT, Bo being the applied external magnetic field taken in the z 
direction, p the magnetic moment and C a constant which will be referred to later. The 
first sum is over a pair of neighbour sites only and the second is extended over the whole 
crystal. 

For the kind of calculations that we are going to perform, it is convenient to rewrite 
(1) as a bond Hamiltonian; 

Z being the coordinate number. 
The renormalisation group treatment used here consists of two basic steps. 
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(i) The first is bond shifting which leads to parallel arrays of two or more bonds. If 
we are dealing with n parallel bonds, they are simply replaced by their sum [14,15]. 

(ii) The second step is a decimation which consists of taking the trace over the spin 
states of all internal sites of a given linear chain. Thus, for a chain with N internal sites, 

exp(Xe2) = TrN[exp(X13 + X34 + . . . + XNz)] (3) 
where 

X i 2  = W’(afa$ + a{&) + K’aia; + (H’ /Z) (a f  + a$) + 2C’/Z (4) 
and TrN denotes the trace over states of the N internal spins. Equation (3) relates the 
renormalised parameters of Hi2 to those of the initial chain Hamiltonian in such way as 
to maintain the same Boltzmann probabilities for the remaining spins. 

These two steps are combined into a Migdal-Kadanoff renormalisation group 
method [14,15] which is very convenient because no extension of parameter space is 
needed, so that the starting Hamiltonian transforms into one of the same form. The first 
step is trivial for any integer scaling factor b,  but even for the simplest case of one internal 
site ( b  = 2 )  the second step is cumbersome because of non-commutativity properties. 
Next we show how to obtain the renormalisation group equations. 

3. Recursion relations for b = 2 

For the b = 2 case, equation (3) becomes 

where 

= W(af U; + a{ ay + 05 a$ + oya{) + K(af 0; + a; 0;) + ( H / Z ) ( a :  + 2 ~ ;  + U ; )  + 4C/Z 
(6) 

and 

X i 2  = W‘(afa$ + a{a{) + K’ofa: + ( H ’ / Z ) ( a f  + 0;) + 2C’/Z. ( 7 )  
Note that the weight factor for the interactions with the field is a direct consequence of 
equations (2a) and (2b) .  

The expansion of exp(X;,) yields 

exp(Xe2) = a’ + b;,(ofaf + a{a{) + c;2afa$ + d;2(af + a$) (8) 
where the coefficients a ’ ,  b’ and c’ depend on K’ , W ,  H’ and C’ . Similarly the expansion 
of exp(X12,) yields 

e ~ p ( X ~ ~ ~ )  = a + b13(uf05 + a{ay) + b23(a$a; + a{o{) + b12(ufaf + a{a{) 
+ ~ 1 3 0 f ( ~ ;  + ~ 2 3 0 5 0 Z 3  + c12afo$ + d12(0: + 05) + d33~5 

+ h 123 [of (05 af + a{ a{) + a$ (a; a? + ay of) ]  + f 1 * 3  0; 0; a; (9) 
and again the coefficients of the expansion are functions of the parameters of %123. From 
equations ( 5 ) ,  (8) and (9), it follows that 

a’ = 2a (loa) 

b;2 = 2b12 (lob) 
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Our task is to write the coefficients of the LHS in terms of W’, K’,  H’ and C’ and those 
of the RHS in terms of W, K ,  H and C. Following along the lines described by Mariz et a1 
[ 141, we derive 

exp(4H‘lZ) = (a’ + ci2 + 2di2)/(a’ + ci2 - 2di2) ( I l a )  

exp(4W’) = (a’ - ci2 + 2b;,)/(a’ - ci2 - 2bi2) (11b) 

exp(4K’) = [(a’ + - 4d;$]/[(a’ - ci2)* - (11c) 

exp(2C’lZ) = (a’ - ci2 - 2bi2)/exp(-2W’ - K’) .  ( 1 1 4  

and 

Performing the same calculations for Yt123, we find that 

5 

+ c { e x p [ E i ( ~ ]  A:i(H) - e x p [ E i ( - ~ ~  Afi(-H)}}* ( 1 2 4  
i =  1 

The variables E and A are eigenvalues and eigenvector components of the following 
matrix: 

* (13) 1 -4K + 4C/Z 4W 4 w  

A(+-H)=  4W k 4 H / Z + 4 C / Z  0 [ 4 w  0 t 4 H / Z  + 4C/Z 

We have inultiplied W, K ,  H and C by 2 in equations (12) and (13) because of the 
first step bond moving of the renormalisation group method. Applying the above results 
for the two-dimensional triangular ( Z  = 6) lattice we obtain the following renor- 
malisation group recursion relations: 

W’ = $ln[{exp(H/3) [cosh(2A+) + a + / A +  sinh(2A+)] + exp(-H/3) [cosh(2A-) 

+ a- /A- sinh(2AP)]}/2 exp(2K) cosh(2H/3)] (14a) 
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K' = +ln[(exp(6K + 4H/3) + exp(H/3) [cosh(2A+) - a + / A +  

x sinh(2A + )]}/[2 exp(2K) cosh(2H/3)] 

x (exp(6K - 4H/3) + exp( -H/3) [cosh(2A+) 

+ a + / A +  sinh(2A+)] + exp(-H/3) [cosh(2A-) + a - / A -  sinh(2A-)]}] 
(14b) 

H' = i lnl[(exp(6K + 4H/3) + exp (H/3) [cosh(2A+) - a + / A +  sinh(2A+)]} 

l(exp(6K - 4H/3) + exp( -H/3) [cosh(2A-) - K / A -  sinh(2A-)]}] 
(14c) 

(144  

and 

C' = 4C + 6W' + 3K' + 3 ln[2 cosh(2H/3)] 

where a, = t H / 6  + K and A? = (H2/36 ? KH/3 + K2 + 8W2)lI2. This completes the 
renormalisation group transformation. When the external magnetic field vanishes, we 
recover the decimation results for the isotropic Heisenberg model [15] (with K+ 2K) 

exp(4K') = (2 exp(4K) + exp(-8K))/3. (15) 
We should make clear that the method described above could also be used for the 

one-dimensional and three-dimensional cases. For hypercubic lattices the bond-moving 
step combines 2d- bonds in parallel. Critical properties of the diluted Heisenberg model 
without field in one, two and three dimensions were studied by similar methods by 
Stinchcombe [15]. 

In zero magnetic field our recursion relations are similar to those obtained in [14] 
and consequently our phase diagram is the same as that shown in figure 6 of [14]. The 
system displays a phase transition at a finite temperature only for the anisotropic case 
(A # 0). For the isotropic case the phase transition occurs at T = 0 and is associated with 
a strong-coupling fixed point at W = K = CQ. 

The recursion relations for H # 0 are in agreement with the expected behaviour of 
the anisotropic Heisenberg ferromagnet in the presence of an external magnetic field, 
i.e. the system exhibits no phase transition. In the isotropic case, for H = 0, the flow is 
towards the attractor at K = 0; however, for H # 0 the recursion relations flow to W = 
0, K/W = CQ, H = +- E, In other words, even if we start with an isotropic situation (A = 
0), the magnetic field induces an anisotropy and the system in an applied external field 
flows to the Ising attractor at K/W = x ,  H = k CQ. 

To obtain the critical behaviour of the Heisenberg ferromagnet at very low tem- 
peratures, we expand the renormalisation group equations close to the isotropic strong- 
coupling fixed point W = CQ, W/K = 1 and H/W < 1, to obtain (H/6K > A) 

Wn+l = b"W, - CoW,A, - CIH, + C2 

H,+1 = b'H, + C3WnAn 

Wn+lAn+l = bsWnAn + O(Ht )  

(16a) 

(16b) 

(16c) 
where b = 2 is the scaling factor, a = 0 as expected since d = 2 is the lower critical 
dimension for the Heisenberg ferromagnet, implying that the fixed point at W = is 
marginal. This marginality gives rise to exponential temperature dependences for the 
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physical quantities at very low temperatures as we show below. The constants are CO = 
4, C1 = and C2 = d In(+). The exponent r = 1.41 instead of Y = d = 2 as expected from 
general arguments [16] at least for Ising systems. The exponent s = ln(j)/ln(2). It is 
interesting to point out that, when we carry out a similar expansion in the presence of a 
small anisotropy and for a magnetic field satisfying the condition 1 % A > H/6K, we 
obtain H,,, = 4H, showing that, when the rotational symmetry of the Hamiltonian is 
broken, the magnetic field at T = 0 scales as bd.  

We start iterating the equations above with AO = 0, W O  = W/C, and H ,  = H ( H / W  
1) and, since the anisotropy A remains zero to linear order in the magnetic field, we shall 
consider these equations with A = 0. In this case they can be iterated to a length scale 
1 = b", and in the limit a + 0 they yield 

W ,  = W O  - (In l)/(ln b )  - C[(1 - l r ) / ( l  - br>]HO (17) 

where WO = (1/C,)(J/2kBT), C = C1/C2, b = 2andHo = pBO/kBT.  Let us first consider 
the case H = 0. Iterating to W, = 0, we obtain the correlation length 5 cc eXp(gJ/2k~T) 
where g = (i In 2)/C, L- 3.42. The correlation length diverges exponentially as the T = 
0 transition is approached. For large magnetic fields we get E cc ( W/H) l / r .  The crossover 
field H ,  is therefore given by 

H ,  = Wexp(-gW/r). (18) 

This expression determines the form in which the magnetic field, at T # 0, appears in 
the scaling functions for the different thermodynamic quantities, i.e. as H / H ,  or ( H /  
w> exp[(g/r)(J/2kBT)]. Since the crossover line rises exponentially we expect to observe 
important field effects at very low temperatures even in small fields. 

The exponential temperature dependence that we derived explicitly for the cor- 
relation length also shows up in the susceptibility [ 171 and gives rise to strong divergencies 
in the low-temperature magnetisation as discussed below. 

An important characteristic of systems exhibiting a zero-temperature phase tran- 
sition is their anomalous dynamics which is associated with a breakdown of conventional 
critical slowing down [18]. MacMillan [19] has proposed a relation between the energy 
barrier for relaxation of a cluster of size 1 and the coupling constant at the same length 
scale: enf l  = W,  + 6, with 6 = 0 since there is no barrier for flipping a spin, and 
such that the relaxation time t[ exp(6J.  Iterating this equation we get 6, = 
V N / T  = C:=O W, which together with the recursion relation for the coupling constant 
in zero field yields 

tE = exp(6:) = z o  e ~ p [ a ( J / 2 k ~ T ) ~ ]  (19) 

where LY = (1/CJ2 and (l/to) = J/h.  

equilibrium effects at very low temperatures as the transition is approached. 
We expect this extreme slowing down of the critical fluctuations to give rise to non- 

4. Magnetisation calculations 

With general renormalisation group equations such as equations (14), it is possible to 
study the phase diagram and to obtain critical exponents; however, we need some extra 
consideration in order to calculate the thermodynamic functions. We show now how to 
obtain the magnetisation. 
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For a crystal of Nsites, the magnetisation per spin is defined as 

m = P s a t ( U 2  = Psat(l/N>(1/ZN) exp(Wl (20) 
where ZN = Tr[exp(X)] is the partition function and X is a reduced Hamiltonian as in 
equation (1). The choice of the site (or Bravais indices) i is irrelevant owing to the lattice 
translational symmetry. When the system is embedded in an external magnetic field Bo, 
the above trace can be written as 

mH = (a:) = (l/N)(a/dH)[ln(Z,)]. (21) 
Let us now generalise the thermodynamic densities used to characterise thermo- 

dynamic phase coexistence [16], to deal with a magnetic quantum system. The general 
magnetisation associated with the coupling constant K is given by the following trace: 

mK = ( l /ZN)  Tr[a:o; exp(X)] 

K = (l/Np )(a/d K ,  [ln(zN)l 

(22) 

(23) 

which can also be written as 

where Np is the number of bonds ( N p  = 3N for the two-dimensional triangular lattice). 
Similarly we introduce the general magnetisation associated with W (mw = 
(afa; + ay ay)) and that associated with the constant C which is the trace of the identity 
matrix. Using a compact notation ( J o  = C, J 1  = K ,  J 2  = Wand J 3  = H), we can write 

or 

m, = (l/bdN;)[a In Z,,)/dJb]T,p = b-dmbT, (24b) 

where the summation convention is used, N,  = N or N p ,  and the invariance of the 
partition function under renormalisation, namely ZN = ZN', has also been used. In 
general, ZN = ZN' only when a constant in the Hamiltonian is carried out upon renor- 
malisation. 

If we want to determine the magnetisation m at any point ( K ,  W ,  H) in the global 
phase diagram, we need to study the flow from such point to the attractor (sink) which 
dominates the region. Physical considerations are used to estimate the generalised 
magnetisations in the neighbourhood of the sink. Then the generalised magnetisations 
are followed back, via equation (24b), to the original ( K ,  W, H) point. 

Our method resembles the method to obtain recursively the free energy for an Ising 
system introduced by Nauemberg and Nienhuis [20] and generalised later [21]. Here we 
incorporate the constant in the Hamiltonian and it is treated as a coupling constant. 

5. Application to adsorbed solid 3He 

Godfrin etal[7,  111 have made a detailed study of adsorbed 3He magnetisation. A NMR 
spectrometer was used to measure the 3He absorption lines at 461 kHz (corresponding 
to an applied magnetic field Bo = 14.21 mT) and 209 kHz (Bo = 6.44 mT). Based on 
previous measurements [8,9], they worked at a 3He coverage near the middle of second- 
layer completion where the largest ferromagnetic effects of the film arise. At lower 
densities, up to first-layer completion, the system behaves as free spins and follows 
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Figure 1. Total magnetic moment us. tempera- 
ture: 0,  experimental measurements for Bo = 
14.21 mT as in [7]; -, is a ten-term high-tem- 
peratures expansion ( J  = 2.1 mK); - - -, renor- 

0 4 8 12 16 20 malisation group results ( J  = 2.1 mK; Bo = 
14.21 mT) .  Temperature i m K )  

I \ '  

Figure 2. The same as figure 1 but for low-temperature results. 

close to a Curie law. The magnetisation deviates from a factor of about 1.7 at higher 
temperatures (20-24 mK) to a factor of lo2 at low temperatures (about 1 mK) with 
respect to the free-spin value. To interpret these data they assumed a two-dimensional 
nearest-neighbour ferromagnetic S = 2 Heisenberg Hamiltonian to describe the second- 
layer magnetism. The high-temperatures series expansion in the parameter K = J/2kBT 
up to ten terms was used and it described well the data with J = 2.1 mK. These features 
are reproduced here in figures 1-3. The agreement is excellent for T > 2.1 mK, the 
region of validity of such expansion. 

Our calculations are performed along a straight line in the K ,  W, H space, with K = 
W (isotropic case) determined by the K / H  ratio. As in [7, 111, we use J = 2.1 mK 
and p = 0.78 mK T-' for the 3He magnetic moment. Thus, different applied fields 
correspond to different straight lines and the various points on one line correspond to 
different temperatures. Since there is no phase transition at finite temperatures, all 
relevant points flow to the attractor with W = 0, K/W = x, H = + * (for H = 0 the flow 
is towards K = W = H = 0) .  The magnetisation per spin in the neighbourhood of the 
attractor is equal to unity. 
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Temperature (mK)  

Figure 3. The magnetisation of the 3He layer for various applied magnetic fields. 

In figure 1 we compare our renormalisation group calculations with the magnetisation 
measurements and high-temperature expansion for the case with applied magnetic 
field of 14.21 mT. We used here the saturation magnetisations for the 3He layer of 
4.3 x A m2. Above 3 mK our results are in excellent agreement with the exper- 
imental data and below they are systematically lower than the data. At T >> J we also 
obtain a Curie behaviour with a Curie constant of 5.78 x lo-" K A m2. 

In figure 2 we show the details of the low-temperature values for the magnetisation. 
Our values are systematically below the experimental values. The difference increases 
below T = J (where the ferromagnetic coupling becomes important). We point out that 
our finite-cell renormalisation does not incorporate low-energy excitations such as long- 
wavelength spin waves. In the absence of a magnetic field this should restrict our analysis 
to temperatures T 2 J. This is shown clearly in the calculation for the specific heat as 
discussed below and which rises exponentially at low temperatures. In the presence of 
an external magnetic field the dramatic effect of the field is evidenced for example 
through the behaviour of the correlation length in zero and finite field as discussed in 
section 3. In this case (Bo # 0) we expect our approach to give a correct description of 
the system also in the region of field-dominated behaviour, above the crossover line, 
i.e. for T < T, = (gJ>-l ln(H/W). It is interesting that, although our method does not 
take into account low-frequency excitations, our magnetisation falls substantially below 
the experimental results at very low temperatures. This may indicate the existence of 
finite size effects, and interplane coupling in the 3He system. Near T = 1.5 K there is an 
inflection point which is caused by the crossover between temperature- and magnetic- 
field-dominated regions. In section 3 we derived an expression for the crossover field 
H ,  which predicts two distinct behaviours for the thermodynamic functions. For a 
magnetic field of 14.21 mT the crossover is at 1.3 mK and therefore we expect a singular 
behaviour around this temperature. In figure 3 we plot various magnetisation curves for 
different magnetic fields and our equation (18) for the crossover field works well, 
indicating where the change in concavity must occur. For instance at a field of 100 mT 
the crossover is around 2 mK as can be easily seen in the figure. This behaviour cannot 
be ruled out by the experimental data of [7,11] even though it is not so sharp as in our 
pictures. The quantitative differences may be attributed to interplane interactions which 
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Temperature (mK1 

Figure 4. The specific heat as a function of temperature: -, calculated from the average 
cell energy; - . -, from the low-temperature recursion relation expansion. 

enhances the interparticle and magnetic couplings or to our small-cell method. The use 
of !arger cells will certainly give more accurate results. 

We calculate the specific heat by two methods: we first note that the average energy 
per bond (Bo = 0) is K(mK + mw) and therefore we can easily obtain the specific heat as 
function of temperature. The result is shown in figure 4 by the full curve. We immediately 
see that the low-temperature behaviour resembles more that of a system with finite 
levels than a Heisenberg system. This is because a small number of Heisenberg spins 
have finite levels and therefore an exponential specific heat at low temperatures. This 
behaviour was also found by Bonner and Fisher [22] in dealing with the one-dimensional 
finite Heisenberg chain. We have also calculated the specific heat using the result 
(equation (16)) for the coupling strength at a length scale I together with the expression 
1171 

to obtain a linear temperature dependence for Cv at very low temperatures ( T  1) as 
shown in figure 4. This result which is based on the general form of the recursion relation 
is independent of the length scale factor b and incorporates all length scales, providing 
a better description of the low-temperature thermodynamic behaviour. The specific 
heat maximum around T = 3 mK is above the experimental result that indicates a 
maximum around T = 2 mK [ 111. 

Finally, we point out that equation (19) for the critical slowing down predicts relax- 
ation times of order s for temperatures 1.0 mK, 0.5 mK and 0.1 mK, 
respectively. Since the time constant for the magnetisation measurements are of the 
order of 1 min, we predict that ‘glassy’ effects will show up for measurements below 
0.5 mK. 

s, 10 sand 

6. Conclusions 

We have developed a quantum mechanical renormalisation group formalism to treat 
the nearest-neighbour S = t Heisenberg model in the presence of an external magnetic 
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field. We have also derived a general method to calculate recursively the magnetisation 
which enables direct comparison with experimental measurements. Our procedure 
based on a b = 2 Migdal-Kadanoff method was worked out in detail and applied to this 
novel two-dimensional Heisenberg ferromagnet consisting of a solid 3He adsorbed layer. 
The study of the dynamics of the system predicted very large relaxation times for 
temperatures below 0.5 mK in very small external fields. The analysis of the renor- 
malisation group recursion relations yielded a crossover behaviour around 1.3 mK for 
the external magnetic fields used in the experiments. The results are encouraging since 
for T > J we obtained good quantitative agreement and qualitative agreement for 
temperatures above the crossover temperature. It is also possible that the low-tem- 
perature data might be under the influence of interplane mechanisms. As suggested [ 111, 
preplating the substrate with 4He should help to explain this question. However, new 
renormalisation group analysis based on computer simulations [23] seems to endorse 
the experimental results for the magnetisation. 

As we have discussed, in order to improve upon the quantitative results we have to 
consider large arrays such as the b = 3 case which is under study now. 
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